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Abstract-In many cases an unknown function T(t) is approximated by a number of observations T(Q) 
and the slope aT/& is needed. The slope is often calculated by fitting a polynomial through a group of the 
‘&(ti) points using the least square method. In the present paper the error introduced into the slope is 
determined for some cases which are representative for experiments using the transient heat-transfer 
technique. The results can either be used when new experiments areplanned or when the best combination 
of parameters (number of points approximated by the polynomial, degree of the polynomial) has to be 
determined for the reduction of existing data. 

It was also found that, within the framework of assumptions made, an even degree polynomial gives 
exactly the same slope as the odd one with the next lower degree. Therefore, only odd degree polynomials 

should be used. 

NOMENCLATURE INTRODUCTION 

coefficients in the polynomial ; THE TRANSIENT technique is often used to 
specific heat of wall material ; determine 

; medium to a body. Usually a thin-walled model 
degree of polynomial ; is built and the wall is instrumented with thermo- 
heat-transfer rate; couples. If heat is transferred to the wall, 
true wall temperature; the wall temperature T increases. A simple 
measured wall temperature ; energy balance for a wall element connects the 
recovery temperature ; heat flow rate q with the slope of the tempera- 
true time; ture-time curve. The relation 
measured time ; 
root-mean-square error of T - TT;:; 

increase of the temperature of a 

q=a(T,- T)=pcd~ 

thermocouple between two readings; + (heat loss by conduction) 

time between two readings; + (heat loss by radiation). (1) 
heat-transfer coefficient ; 
non-dimensional error in dT/at ; 

non-dimensional r.m.s. error of the 
temperature ; 
polynomial approximating T(ti); 
number of points T(tJ approximated 
by polynomial ; 
density of wall material; 
time constant. 

* Head of the Aerodvnamic Research Section. 

Here, a is the heat-transfer coefficient, T, the 
recovery temperature, p and c are the density 
and the specific heat of the wall material re- 
spectively and d is the thickness of the wall. 

If a digital recorder is used it is usual to record 
the temperatures I with constant time in- 
tervals. Using the least square method a poly- 
nomial of the form 6 = a, + a,t + . . . a$’ is 
then fitted through a number of these [I] 
points and the slope, iW,Gt, is determined near 

t Research Engineer. the middle of the interval. 
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In many cases, the heat losses by conduction 
and radiation [in equation (l)] can be neglected 
and the change in wall temperature during a 
run is so small that LX, T,, p and c can be assumed 
to be constant. In this case equation (1) can be 
integrated. The result is 

T-T 
-*- = exp [ - (at/pcd)]. 
(7’- T*),=o 

(2) 

Often, equation (2) is a good approximation for 
that part of the T(t) relation that is approximated 
by the polynomial. If not, the corrections for 
conduction and radiation are large and domin- 
ate the accuracy any way. 

The number of points and the degree of the 
polynomial used are usually determined “by 
eye”. The present note gives a possibility to 
determine the best combination for a given 
experimental arrangement (see postscript ). 

RESIJLTS 

The theory is based on the following assump- 
tions which are not too restricting for typical 
heat-transfer experiments. 

(1) Only one variable (say T) is subject to an 
error. 

(2) This error (T - T) is random and has 
either a normal distribution or the same 
probability that it is + (J$) AT,,,, 0, or 

- (43) AT,,,. 
(3) The interval At between the readings of 

the other variable (ti+ 1 - ti) is constant. 
(4a) The relation T(t) is of the form T _ r-’ 

[equation (2)], or 
(4b) The effect of the curvature of the T(t) 

relation can be neglected for the z-interval 
approximated by the polynomial. 

(5) The slopes i%/& and dT/& are deter- 
mined in the middle of the t-interval. 

i=l 2 3 2~ +l (Here, v =L) 

FIG. 1. Sketch illustrating the method and the nomenclature. 
T(t) = true temperature-time relation; 
T(ti) = 2v + 1 measured data points; 
0(r) = Polynomial fitted through the 2v + 1 points. 
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If assumptions 1, 2, 3,4a and 5 are satisfied the 
root-mean-square (r.m.s.) error 6 of the slope 
can be given in the form 

6 = fn(At,‘r, t, 2v + 1, n). (3) 

Here the following definitions (see Fig. 1) are 
used 

6 = aiyat - de/at 

( a7yat > 
(4) 

rms-value for many repeated runs 

At = time interval between two subsequent 
readings of a thermocouple 

(5) 

AT,,, 
’ = V - T,),z,, 

(6) 

A.T,ms = r.m.s.-value of many T - T values 
2v + 1 = number of points 7Jti) approximated 
with the polynomial 

n = degree of polynomial. 
The relation given by equation (3) was deter- 

mined in two different ways. In a simple-minded 
approach, an IBM 7090 computer was pro- 
grammed to superimpose random errors (dis- 
tributed according to the two probability 
distributions described above) upon the exact 
T(t) relation given by equation (2), resulting in 
groups of 2v + 1 points z(tJ. For each of these 
groups a figure for 6 and c was calculated. This 
was repeated with 270 groups and approximate 
figures for 6 and c were calculated with equations 
(4) and (6). As this method required excessive 
computer time, it was only used to check the 
approach described below and to obtain in- 
formation about the effect of the probability 
distribution of the error T - T. Within the 
accuracy of the results, no systematic difference 
could be detected for the two probability dis- 
tributions used. 

In the second approach the error 6 was deter- 
mined directly with a statistical method des- 
cribed in reference [l]. The result is 

t d exp [v At/r] 

i=l 1=0 

(7) 

FIG. 2. Relative error 6 in the slope of the T(t)-curve as a function of the degree n 
of the polynomial used, of the error L in the temperature reading and of the 

number 2v + 1 points used. 

4T 
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Apparently 6, is the error for vanishing 6, that is 
the error introduced by approximating the 
exponential in equation (2) with a polynomial. 
The cl are complicated functions which contain 
integers and the constant At. As they are in- 
dependent of the ?;: they can be tabulated once 
and for all. This was done on an IBM 7090 

and G. LINDSJB 

computer. The results are shown in Figs. 2-4. 
They can be used for both distribution functions 
specified in assumption (2). The most important 
result is that 6 is exactly the same for n = 1 and 
2 if assumptions 1, 3 and 5 are satisfied. The 
same is true for n = 3 and 4, 5 and 6, etc. Only 
odd polynomials should be used therefore, as 

0 5 10 15 20 25 2v+l 30 

FIG. 3. Relative error 6 in the slope of the T(t)-curve as a function of the degree n 
of the polynomial used, of the error t in the temperature reading and of the 

number 2v + 1 points used. 

FIG. 4. Relative error 6 in the slope of the T(t)-curve as a function of the degree 
n of the polynomial used, of the error t in the temperature reading and of the 

number 2v + 1 points used. 
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FIG. 5. Relation between the error L in the temperature reading and the relative 
length of the T(t)-curve for minimum error b of the slope. In range 1 the error is 
mainly due to scatter of the temperature readings, in range 2 the error is mainly 
due to the curvature of the r(t) relation. *Along this line, 6 has its minimum. 

the even ones with the next higher degree do not 
increase the accuracy. They only lead to in- 
creased complexity of the data reduction. If a 
small part of the T(t)---relation is approximated 
with the polynomial, theeffect ofthe temperature 
scatter dominates, if a large part is used, the 
effect of the curvature dominates. Between these 
two ranges, 6 has its minimum. The relation 
between the scatter E and the part of the curve 
used (2v -t- 1) At/r for minimum 6 is given in 
Fig. 5. 

If assumption (4a) can be replaced by {4b), 
equation (3) can be written as 

6 = +&$?(2V + 1, n). (8) 

Here, AT = l~W/&j At is the increase of the 
temperature of a thermocouple between two 
subsequent readings. Results for n = 1, 2 and 
3,4 are given in Fig. 6. 

In order to determine whether the cu~ature 
can be neglected in an actual case, figures for 
E, v, and At/z should be inserted into Fig. 5. If 
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readings of the some thermocouple 

0 10 20 2v+l 30 

FIG. 6. Relation between the relative error 6 of the T(t) slope, 
the degree of the polynomial n and the number 2v + 1 of 

they determine a point well in range 1 of this points, if the curvature of the I’@) relation can be neglected. 
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figure and if the curvature of the experimental 
curve is equal to or less than the curvature of a 
comparable exponential, equation (8) may be 
used. 

COMPARISON WITH AN EXPERIMENT 

The results of the present investigation were 
applied to the reduction of the experimental 
data described in reference [2]. In this experi- 
ment the heat transfer to a thin-walled cone was 
measured by determining the slope of the e(t) 
relation where 0 is the polynomial approxi- 
mating the I. As T(t) is unknown AT,,, was 
approximated by (T - I$,,. The value of 6 
was determined by calculating the scatter of 
the Stanton numbers reduced at different times 

c SyTbol 2 

16 . 

bth 

FIG. 7. Comparison of the calculated error 6, with the error 
6 erp determined from an experiment. 

by comparing them with a second degree poly- 
nomial. The results are shown in Fig. 7 and the 
agreement is seen to be satisfactory. 

CONCLUSIONS 

If transient heat-transfer experiments are 

reduced, the present results can be used when 
planning a new experiment and when reducing 
the d&a. 

Ifa new experiment is planned, the wind tunnel 
and the recording system are usually given and 
AT,,, and (T - T,), =. are known or can be 

the wall thickness of the model (changing t) and 
the number of thermocouples (changing At). 
With the aid of Figs. 2-6 the most satisfactory 
combination between these parameters and the 
error 6 can be found. 

If existing data are to be reduced, At/z and 6 
can be determined and Figs. 2-6 can be used to 
get a compromise between accuracy and re- 
quired computer time. 

Finally it is pointed out that in this case even 
degree polynomials give exactly the same result 
for the slope as odd ones with the next lower 
degree. Reducing the slopes to Stanton numbers, 
p and c are needed. As they are weak functions 
of T and as 0(v At) is different for n = 1 and 2, 
the Stanton numbers will be slightly changed 
if n = 1 is replaced by n = 2. However, the effect 
is usually hardly observable. 
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POSTSCRIPT 

During the publication of the present investigation a 
related one with the title “Random errors of derivatives 
obtained from least square approximation to empirical 
functions” was published by Hans C. Joksch in SIAM Rev. 1 
(l), (1966). This latter work gives the error of the lirst and 
second derivative in the whole interval approximated by the 
polynomial and not only in the middle as the present paper 
does. The present paper, on the other hand. takes into 
account the effect of the curvature of a T(t) relation typical 
for transient heat transfer measurements. The expression 
6AT/AT,,, in Fig. 6 is identical with Joksch’s J(R: 1 and 
J(R:l in Tables 2 and 3. 
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R&sum&-Dans de nombreux cas, on approche une fonction inconnue T(t) par un certain nombre d’obser- 
vations Z&) et l’on a besoin de la pente dT/at. La pente est souvent calcul&e en ajustant un polynbme B 

travers un groupe de points T(Q) & I’aide de la mtthode des moindres carrts. Dans cet article, l’erreur 
introduite sur Ia pente est dbtermink pour quelques cas qui reprbentent des exp&iences oh l’on emploie la 
technique du transport de chaleur transitoire. Les r&ultats peuvent Ctre utilis6s soit lorsque de nouvelles 
exp&riences sont projetbes, soit forsque la meilleure combinaison de parambtres (nombre de points 
approchCs par ie polynBme, degr& du polynbme) doit ttre dCtermin& pour la reprbsentation des donnkes 
existantes. 

On a Cgalement trouvi: que, dans le cadre des hypothbses t’aites, un poIynbme de degrC pair donne exacte- 
ment la m&me pente que le polynbme impair de degr6 immediatement infkieur. Done, seuls des pofyncimes 

de degr6 impair devraient &tre utilisCs. 

Zusammenfassung-In vielen Flllen wird eine zuniichst unbekannte Funktion T(t) durch eine Anzahl von 

Messwerte T(q) approxirniert und es interessiert die Ableitung aT/dt. Hlufig ermittelt man die Ableitung so, 
dass unter Verwendungder Methode der kieinsten Quadrate ein, den Messwerten q(tj) angepasstes Poiynom 
aufgestellt wird. In der vorliegenden Arbeit wird der Fehter bei der ~estimmung der Abfeitung fiir einige 
F%Ie ermittelt, die repr&entative IXir Experimente gelten k6nnen, in denen von den Methoden der 
instationlren WSirmeiibertragung Gebrauch gemacht wird. Die Ergebnisse kiinnen einmaJ bei der Planung 
neuer Experimente Verwendung finden, zum anderen llsst sich die giinstigste Kombination von Parametern 
(Anzahl der durch das Polynom approximierten Punkte, Grad des Polynoms) Jinden, wenn eine Reduktion 
vorliegender Werte angestrebt wird. 

Ferner ergab sich, dass im Rahmen der getroffenen Annahmen ein Polynom geraden Grades den gieichen 
Wert fiir die Ableitung liefert, wie das Polynom vom niichst niedrigeren, ungeraden, Grade. Es so&en deshafb 

nur Polynome von ungeradem Grade verwendet werden. 

AHHOTBU;RR-BO MHOWX cnyqaRx Heaasec-rwafl @YHK~MR T(t) annpoxcurapyeTcn prrgolw 
O~IHTHMX TogeE Tf(ti), 9~0 ~eo6~0~~~0 mm ~o~y~e~~~ naKjIoHa K~HBO# iWf&. 3asacrym 
HaKaoH paccq~T~BaeTcK c no*orr[bn, no~~HoM~Ha~u0ro up~6~~~e~~~ H Toward n(tf) no 

MeTOAy HaHMt%lbUlHX HBaApaTOB. B AaHHon pa60Te 0npeAenueTm olrrafhca HaKnoHa ~plil~ott 

@VI HeKOTOpbIX cnyqaee, xapaKTepHHx A~FI. HecTaqaoeapmx meTo~,ols awnepmenToB. 

nOJIyvenHISe pe3yJIbTaThl MO?KHO MCnOJlb3OBaTh npEi nnaHwposanHz4 BKCnepKMeHTOB, a 

TaKme np~ onpe~enewaa OnTMMaJrbHOti KOM6HHaVHH napaMeTpOB, o6o6qaloryux nOnyqeH- 

H~e~aH~~e(~~c~o Toqe~,annpo~cKM~pyem~x ~O~UHOMO~,cTeneH~~O~~HOMa). 

YCTa~ioB~e~O,TaK~e,~TO XIpIl npMHRTbCC ~O~y~eH~~X ~03EHHOMZ..l reTHO% CTelfeHW AaloT 

Te me pe3ynbTaTbl, 9~0 II n0~1tinO~bI npefibrRywe2t aeuerlrofi cTeneri1;I. CneRoBarenbHo, 

qenecoo6pa3Ho ucnosrbaoaawfe ~on6K0 nonkiHonfoB HeseTHoti CTeneHH. 


